
NCC Group Whitepaper

How to Backdoor Diffie-Hellman
June 17, 2016 – Version 1.0

Prepared by
David Wong — Security Consultant

Abstract
Lately, several backdoors in cryptographic constructions, protocols and implemen-

tations have been surfacing in the wild: Dual EC in RSA's B-Safe product, a modified

Dual EC in Juniper Networks's operating system ScreenOS and a non-primemodulus

in the open-source tool socat. Many papers have already discussed the fragility of

cryptographic constructions not using nothing-up-my-sleeve numbers, aswell as how

such numbers can be safely picked. However, the question of how to introduce

a backdoor in an already secure, safe and easy to audit implementation has so far

received little attention in public research.

We present two ways of building a Nobody-But-Us (NOBUS) Diffie-Hellman back-

door: a composite modulus with a hidden subgroup (CMHS) and a composite mod-

ulus with a smooth order (CMSO).We then explain howwewere able to subtly imple-

ment and exploit it in a local copy of an open source library using the TLS protocol.

Table of Contents

1 Introduction . 3

2 Attacks on Diffie-Hellman and the Discrete Logarithm . 6

2.1 Pollard Rho . 6

2.2 Pohlig-Hellman . 6

2.3 Small Subgroup Attacks . 8

3 A First Backdoor Attempt in Prime Groups . 10

4 A Composite Modulus for a NOBUS Backdoor with a Hidden Subgroup (CM-HSS) 12

5 A Composite Modulus for a NOBUS Backdoor with a B-Smooth Order (CM-HSO) 14

6 Implementing and Exploiting the Backdoor in TLS . 16

6.1 Background . 16

6.2 Implementation . 18

6.3 Exploitation . 20

7 Detecting a Backdoor and Defending Against One . 21

8 Conclusion . 23

2 | How to Backdoor Diffie-Hellman NCC Group

1 Introduction

Around Christmas 2015 Juniper Networks, a networking hardware company, released an out-of-cycle secu-

rity bulletin.1 Two vulnerabilities were disclosed without much details to help us grasp the seriousness of

the situation. Fortunately, at this period of the year many researchers were home with nothing else to do

but to solve this puzzle. By quickly comparing both the patched and vulnerable binaries, the two issues

were pinpointed. While one of the vulnerabilities was a simple ``master''-password implemented at a crucial

step of the product's authentication, the other discovery was a bit more subtle: a unique value used in the

program was modified. More accurately, a number in the source code was replaced. The introduction of

the vulnerability was so simple, and due to the fact that the number was stored as a string of hexadecimal

digits, the trivial use of the UNIX command line tool strings was enough to discover it.

Figure 1: The strings of the patched binary

Figure 2: The strings of the vulnerable binary

The special value endedupbeing a constant used in the system's pseudo-randomnumbergenerator (PRNG):

1https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713

3 | How to Backdoor Diffie-Hellman NCC Group

https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713

Dual EC, an odd algorithm believed to have been backdoored by the NSA[BLN15]. The PRNG's core has the

ability to provide a Nobody-But-Us (NOBUS) trapdoor—a secret passage that can only be accessed by the

people holding the secret key. In our case, the elliptic curve discrete logarithm k in the Dual EC equation

Q = [k]P (where P andQ are the two elliptic curve points used in the foundation of Dual EC).

Solely the NSA is thought to be in possession of that k value, making them the only ones able to climb back

to the PRNG's internal state from random outputs, and then able to predict the PRNG's future states and

outputs. The backdoor in Dual EC was pointed out by Shumow and Ferguson[SF07] at Crypto 2007, which

might have been the reason why Juniper Networks generated their own pointQ in their implementation of

Dual EC. Shortly after that revision, amysterious updatewould change thatQpoint onemore time, magically

allowing another organization, or person, to access that backdoor in place of the NSA or Juniper Networks.

Although the quest to find Juniper Networks's backdoor and the numerous open questions that arose from

that work is a fascinating read by itself[CCG+16], it is only the introduction of the work you are currently

reading. Here we aim to show how secure and strong cryptographic constructions are a single and subtle

change away from being your own secretive peep show.

On February 1st, 2016, only a few months after Juniper Networks's debacle, socat published a security

advisory of its own2:

In the OpenSSL address implementation the hard coded 1024-bit DH p parameter was not

prime. The effective cryptographic strength of a key exchange using these parameters was

weaker than the one one could get by using a prime p. Moreover, since there is no indication

of how these parameters were chosen, the existence of a trapdoor that makes possible for an

eavesdropper to recover the shared secret from a key exchange that uses them cannot be ruled

out.

In the same vein as Juniper Networks's problem, a single number was at issue. This time it was the public

modulus, an integer used to generate the ephemeral Diffie-Hellman keys of both parties during socat's

TLS handshakes. This algorithm had been, contrary to Dual EC, considered secure from the start. But as

it turned out, badly understood as well—as the Logjam[ABD+15] paper had demonstrated earlier in the

previous year, most servers would use Diffie-Hellman key exchanges to perform ephemeral handshakes,

and the same servers would generate their ephemeral keys from hardcoded defaults (often the same ones)

provided by various TLS libraries. The paper raised a wave of discussion around how developers should

use Diffie-Hellman, at the same time scaring people away from 1024-bit DH: ``We estimate that even in the

1024-bit case, the computations are plausible given nation-state resources''.

Securely integrating DH in a protocol is unfortunately not well understood. Defensive approaches are dis-

cussed in several RFCs[Res13, Zuc13], but few papers so far have taken the point of view of the attacker. The

combination of the current trend of increasing the bitsize of DH parameters with the now old trend of using

open source libraries' defaults to generate ephemeral Diffie-Hellman keys would give opportunist attackers

a valid excuse to submit their bigger (more secure) and backdoored parameters into open-source or closed-

source libraries. This work is about generating such backdoors and implementing them in TLS, showing how

easy and subtle the process is. The working code along with explanations on how to reproduce our setup

is available on Github.3

In Section 2 wewill first briefly talk about the several attacks possible on Diffie-Hellman, from small subgroup

attacks to Pohlig Hellman's algorithm. In Section 3 we will introduce our first attempt at a DH backdoor. We

2http://www.openwall.com/lists/oss-security/2016/02/01/4
3https://github.com/mimoo/Diffie-Hellman_Backdoor

4 | How to Backdoor Diffie-Hellman NCC Group

http://www.openwall.com/lists/oss-security/2016/02/01/4
https://github.com/mimoo/Diffie-Hellman_Backdoor

will present our first contribution in section 4 by using the ideas of the previous section with a composite

modulus to make the backdoor a NOBUS one. In section 5 we will see another method using a composite

modulus that allows us to choose a specific generator, allowing us to only modify the modulus value when

implementing our backdoor. In section 6 we will explain how we implemented the backdoor in TLS and

how we exploited it. We will then see in section 7 how to detect such backdoors and how to prevent them.

Eventually we will wrap it all up in section 8.

5 | How to Backdoor Diffie-Hellman NCC Group

2 Attacks on Diffie-Hellman and the Discrete
Logarithm

To attack a Diffie-Hellman key exchange, one could extract the secret key a from one of the peer's public key

ya = ga (mod p). One could then compute the shared key gab (mod p) using the other peer's public key
yb = gb (mod p).

The naive way to go about this is to compute each power of g (while tracking the exponent) until the public
key is found. This is called trial multiplication andwould need on average q

2 operations to find a solution (with

q the order of the base). More efficiently, algorithms that compute discrete logarithm in expected
√
q steps

like Shank s baby-step giant-step (deterministic), Pollard rho or Pollard Kangaroo (both probabilistic) can be

used. Because of the memory required for baby-step giant-step, Pollard's algorithms are often preferred.

While both are parallelizable, Pollard Kangaroo is used when the order is unknown or known to be in a small

interval. For larger orders the Index Calculus or other Number Field Sieve (NFS) algorithms are the most

efficient. But so far, computing a discrete logarithm in polynomial time on a classical computer is still an

open problem.

2.1 Pollard Rho

The algorithm that interests us here is Pollard Rho: it is fast in relatively small orders, it is parallelizable and

it takes very little amount of memory to run. The idea comes from the birthday paradox and the following

equation (where x is the secret key we are looking for; and a, a′, b and b′ are known):

gxa+b = gxa
′+b′ (mod p)

=⇒ x = (a− a′)−1(b′ − b) (mod p− 1)

The birthday paradox tells us that by looking for a random collision we can quickly find one in O(
√
p). A

random function is used to efficiently step through various gxa+b until two values repeat themselves, it is

then straightforward to calculate x. Cycle-finding algorithms are used to avoid storing every iteration of
the algorithm (two different iterations of gxa+b are started and end up in a loop past a certain step) and

the technique of distinguished points is used to parallelize the algorithm. (Machines only save and share

particular iterations, for example iterations starting with a chosen number of zeros.)

2.2 Pohlig-Hellman

In 1978, Pohlig and Hellman discovered a shortcut to the discrete logarithm problem[PH78]: if you know the

complete factorization of the order of the group, and all of the factors are relatively small, then the discrete

logarithm can be quickly computed.

The idea is to find the value of the secret key x modulo the divisors of the group's order by reducing the
public key y = gx (mod p) in subgroups of order dividing the group order. The secret key can then be
reassembled in the group order using the Chinese Remainder Theorem (CRT), which is described below.

The full Pohlig-Hellman algorithm is summarized, with ϕ being Euler's totient function, as:

1. Determine the prime factorization of the order of the group

ϕ(p) =
∏

pkii

2. Determine the value of xmodulo pkii for each i

3. Recompute x (mod ϕ(p)) with the CRT

The central idea of Pohlig and Hellman's algorithm is in how they determine the value of the secret key x
modulo each factor pkii of the order. One way of doing it is to try to reduce the public key to the subgroup

6 | How to Backdoor Diffie-Hellman NCC Group

we're looking at by computing:

yϕ(p)/p
ki
i (mod p)

Computing the discrete logarithm of that value, we get x (mod pkii). This works because of the following

observation (note that x can be written x1 + pkii x2 for some x1 and x2):

yϕ(p)/p
ki
i = (gx)ϕ(p)/p

ki
i (mod p)

= g(x1+p
ki
i x2)ϕ(p)/p

ki
i (mod p)

= gx1ϕ(p)/p
ki
i gx2ϕ(p) (mod p)

= gx1ϕ(p)/p
ki
i (mod p)

= (gϕ(p)/p
ki
i)x1 (mod p)

The value we obtain is a generator of the subgroup of order pkii raised to the power x1. By computing the

discrete logarithm of this value we will obtain x1, which is the value of x modulo pkii . Generally we will use
the Pollard Rho algorithm to compute that discrete logarithm.

The Chinese Remainder Theorem, sometimes used for good[SF] will be of use here for evil. The following

theorem states why it is possible for us to find a solution to our problem once we find a solution modulo

each power prime factor of the order.

Theorem 1. Supposem =
k∏
mi withm1, · · · ,mk pairwise co-prime.

For any (a1, · · · , ak) there exists an x such that:
x = a1 (mod m1)
...

x = ak (mod mk)

There is a simple way to recover x (mod m), which is stated in the following theorem:

Theorem 2. Moreover there exists a unique solution for x (mod m):

x =

k∑
ai ∗ (

∏
j 6=i

mjmj) (mod m)

withmj = m−1
j (mod mi)

At first, it might be kind of hard to grasp where that formula is coming from. But let's see where it does by

starting with only two equations. Keep in mind that we want to find the value of xmodulom = m1m2

x = a1 (mod m1)

x = a2 (mod m2)

}
=⇒ x = ? (mod m)

How can we start building the value of x?

If x = a1m2 (mod m),

then

{
x = a1m2 (mod m1)

x = 0 (mod m2)

7 | How to Backdoor Diffie-Hellman NCC Group

Not quite what we want, but we are getting there. Let's add to it:

If x = a1m2m2 (mod m)

m2 the integer congruent tom−1
2 (mod m1)

then

{
x = a1m2m2 = a1 (mod m1)

x = 0 (mod m2)

That's almost what we want! Half of what we want actually. We just need to do the same thing for the other

side of the equation, and we have:

x = a1m2m2+
a2m1m1 (mod m)

= a1m2m2 (mod m1)
= a1 (mod m1)

= a2m1m1 (mod m2)
= a2 (mod m2)

withm2 the integer congruent tom−1
2 (mod m1) andm1 the integer congruent tom−1

1 (mod m2).

Everything works as we wanted! Now you should understand better how we came up with that general

formula. There have been improvements to it with the Garner's algorithm4 but this method is so fast anyway

that it is not the bottleneck of the whole attack.

2.3 Small Subgroup Attacks

The attack we just visited is a passive attack: the knowledge of one Diffie-Hellman exchange between two

parties is enough to obtain the following shared key. But instead of reducing one party's public key to an

element of different subgroups, there is another clever attack called a small subgroup attack that creates the

different subgroup generators directly and sends them to one peer successively to obtain its private key. It

is an active attack that doesn't work against ephemeral protocols that renew the Diffie-Hellman public key

for every new key exchange. This is, for example, the case with TLS when using ephemeral Diffie-Hellman

(DHE) as a key exchange during the handshake.

The attack is straight forward and summed up below:

1. Determine the prime factorization of the order of the group

ϕ(p) =
∏

pkii

2. Find a generator for every subgroup of order pkii , this can be done by picking a random element α
and computing

αϕ(p)/p
ki
i (mod p)

3. Send generators one by one as your public keys in different Diffie-Hellman key exchanges

4. Determine the value of xmodulo pkii for each shared key computed

4http://www.csee.umbc.edu/~lomonaco/s08/441/handouts/GarnerAlg.pdf

8 | How to Backdoor Diffie-Hellman NCC Group

http://www.csee.umbc.edu/~lomonaco/s08/441/handouts/GarnerAlg.pdf

5. Recompute x (mod ϕ(p)) with the CRT

The fourth step can be done by having access to an oracle telling you what the shared key computed by

the victim is. In TLS this is done by brute-forcing the possible solutions and seeing which one has been

used by the victim in their following encrypted messages (for example the MAC computation in the Finish

message during the handshake). With these constraints the attack would be weaker than Pohlig-Hellman

since the brute-force is slower than Pollard Rho, or even trial multiplication. Because of the previously stated

limitations and the fact that this attack only works for rather small subgroups, we won't use it in this work.

9 | How to Backdoor Diffie-Hellman NCC Group

3 A First Backdoor Attempt in Prime Groups

The naive approach to creating a backdoor would be to weaken the parameters enough to make the com-

putation of discrete logarithms affordable. Making the modulus a prime of a special form (re + s with
small r and s) would facilitate the Special Number Field Sieve (SNFS) algorithm. Having a small modulus
would also allow for easier pre-computation of the General Number Field Sieve (GNFS) algorithm. It is

believed[ABD+15] that the NSA has enough power to achieve the first pre-computing phases of GNFS on

1024-bit primes, which would then allow them to compute discrete logarithms in such large groups in the

matter of seconds.

But these ideas are pure computational advantages that involve no secret key to make the use of efficient

backdoors possible. Moreover they are downright not practical: the attacker would have to re-do the pre-

computing phase entirely for every different modulus, and the next generation of recommended modulus

bitsize (2048+) would make these kind of computational advantages fruitless.

Another approach could be to use a generator of a smaller subgroup (without publishing what smaller

subgroup we use) so that algorithms like Pollard Rho would be cost-effective again.

ϕ(p) = p− 1 = p1 × · · · × pk

gxy = (mod p)

order

But then algorithms like Pollard Kangaroo that run in the same amount of time as Pollard Rho and that do

not require the knowledge of the base's order could be used as well by anyone willing to try. This makes it

a poorly hidden backdoor that we cannot qualify as NOBUS.

Our first contribution (CM-HSS) in section 4 makes both of these ideas possible by using a composite mod-

ulus. GNFS and SNFS can then be used modulo the factors of the composite modulus, or better as we will

see, the generator's ``small'' subgroups can be concealed modulo the factors.

Back to our prime modulus. A second idea would be to set the scene for the Pohlig-Hellman algorithm to

work. This can be done by fixing a prime modulus p such that p − 1 is B-smooth with B small enough for
discrete logarithms in bases of order B to be possible.

y = gx (mod p)
ϕ(p) = p− 1 = p1 × · · · × pk

x (mod p1) · · · x (mod pk)

Pohlig-Hellman

x (mod ϕ(p))

CRT

But this design is flawed in the same ways as the previous ones were: anyone can compute the order of the

group (by subtracting 1 from p) and try to factor it. Choosing p such that p − 1 would include factors small
enough to use one of the O(

√
p) would make it dangerously factorisable. Using the Elliptic Curve Method

(ECM), a factorization algorithmwhich complexity only depends on the size of the smallest factor (or for a full

factorization, on the size of the second largest factor), the latest records5 were able to find factors of around

300 bits. This necessary lower bound on the factors makes it unfeasible to use any of theO(
√
p) algorithms

5http://www.loria.fr/~zimmerma/records/top50.html

10 | How to Backdoor Diffie-Hellman NCC Group

http://www.loria.fr/~zimmerma/records/top50.html

that would take, for example, more than 2150 operations to solve the discrete logarithm of 300-bit orders.

Our second contribution in section 5 uses a composite modulus to hide the smoothness of the order (CM-

HSO) as long as the modulus cannot be factored. This method is preferred from the first contribution as it

might only need a change of modulus. For example, in many DH parameters or implementations, g = 2 as a
generator is often used. While our first contribution will not allow any easy ways to find a specific generator,

our second method will.

11 | How to Backdoor Diffie-Hellman NCC Group

4 A Composite Modulus for a NOBUS
Backdoor with a Hidden Subgroup
(CM-HSS)

Our first NOBUS backdoor gets around the previous problems using a composite modulus n = pq with p
and q large enough to avoid the factorization of n. This requires the same precautions used to secure RSA
instances, with n typically reaching 2048 bits and with two factors p and q nearing the same size.

With the factorization of n known, the discrete logarithm problem can be reduced modulo p and q and
solved there, before being reconstructed modulo ϕ(n) with the help of the CRT theorem.

y = gx (mod n = pq)

y (mod p) y (mod q)

x (mod p− 1) x (mod q − 1)

NFS/SNFS NFS/SNFS

x (mod (p− 1)(q − 1))

CRT

p and q could be hand-picked as SNFS primes, or we could use GNFS to compute the discrete logarithm
modulo p and q. But a more efficient way exists to ease the discrete logarithm problem. Choosing a

generator g such that both g modulo p and g modulo q generate ``small'' subgroups, would allow us to

compute two discrete logarithms in two small subgroups instead of one discrete logarithm in one large

group.

For example, we could pick p and q such that p − 1 = 2p1p2 and q − 1 = 2q1q2 with p1 and q1 two small
prime factors and p2, q2 two large prime factors. Lagrange's theorem tells us that the possible orders of the

subgroups are divisors of the group order. This mean we can probably find an element g of order p1q1 to
be our Diffie-Hellman generator.

p− 1

p12 p2

g (mod p)

subgroup of order

q − 1

q12 q2

g (mod q)

By reducing the discrete logarithm problem y = gx modulo p and q with our new backdoored generator,

we can compute xmodulo p−1 and q−1more easily and then recompute an equivalent secret key modulo
(p − 1)(q − 1). This will find the exact original secret key with a probability of 1

4p2q2
, which is tiny, but this

doesn't matter since the shared key we will compute with that solution and the other peer's public key will

be a valid shared key.

Proof. Let a+ kap1q1 be Alice's public key for ka ∈ Z and let b+ kbp1q1 be Bob's public key for kb ∈ Z,
then Bob's shared key will be (ga+kap1q1)b+kbp1q1 = gab (mod n).

12 | How to Backdoor Diffie-Hellman NCC Group

Let a+ kcp1q1 be the solution we found for kc ∈ Z,
then the shared key we will compute will be (gb+kbp1q1)a+kcp1q1 = gab (mod n), which is the same as Bob's
shared key.

We used the Pollard Rho function in Sage 6.10 on a Macbook Pro with an i7 Intel Core @ 3.1GHz to compute

discrete logarithms modulo safe primes of diverse bitsizes. The results are summed up in the table below.

order size expected complexity time

40 bits 220 01s

45 bits 222 04s

50 bits 225 34s

A stronger and more clever attacker would parallelize this algorithm on more powerful machines to obtain

better numbers. To be able to exploit the backdoor ``live'' we want a running-time close to zero. Using an 80-

bit integer as our generator's order, someone with no knowledge of the factorization of the modulus would

take around 240 operations to compute a discrete logarithm while this would take us on average 221 thanks
to the trapdoor. A more serious adversary with a higher computation power and a care for security might

want to choose a 200-bit integer as the generator's order. For that they would need to be able to perform

250 operations instantaneously if they would want to tamper with the encrypted communications following
the key exchange, while an outsider would have to perform an ``impossible'' number of 2100 operations. The
size of the two primes p and q, and of the resulting n = pq, should be chosen large enough to resist against
the same attacks as RSA. That is an n of 2048 bits with p and q both being 1024 bits long would suffice.

To use such a backdoor, onemust not only generate twoprimes p and q to satisfy the previous shape, but also
find a specific generator g. This is not a hard task, unless you want to use a specific generator g. For example
many libraries use g = 2 by default, implementing this backdoor would mean changing both the modulus
and the generator. This is because the probability that an element in a group of order q is the generator
of a subgroup of order d is d

q . This means that with our example g = 2, we would need to generate many
modulus hoping that g = 2 as a generator would work. The probability that it would work for each try would
be:

p1p2
(p− 1)(q − 1)

∼ 1

pq
=

1

n

This is obviously too small of a probability for us to try to generate many parameters until one admits our

targeted g as a generator of our ``small'' subgroup. This is a problem if we want to only replace the modulus

of an implementation to activate our backdoor. Since changing only one value would be more subtle than

changing two values, our next contribution revises the way we generate the backdoor parameters to solve

this problem.

13 | How to Backdoor Diffie-Hellman NCC Group

5 A Composite Modulus for a NOBUS
Backdoor with a B-Smooth Order
(CM-HSO)

Let's start again with a composite modulus n = pq, but this time let's choose p and q such that p − 1 and
q− 1 are both B-smooth with B small enough for the discrete logarithm to be doable in subgroups of order

B. We'll see later how to choose B.

Let p − 1 = p1 × · · · × pk × 2 and q − 1 = q1 × · · · × ql × 2 such that lcm(p − 1, q − 1) = 2 and such
that pi ≤ B and qj ≤ B for all i ∈ J1, kK and j ∈ J1, lK respectively. This makes the order of the group
ϕ(n) = (p− 1)(q − 1) B-smooth.

Constructing the Diffie-Hellman modulus this way permits anyone with both the knowledge of the order

factorization and the ability of computing the discrete logarithm in subgroups of order B, to compute the

discrete logarithm modulo n by using the Pohlig-Hellman method.

Since p−1 and q−1 are both B-smooth, they are susceptible to be factoredwith the Pollard's p-1 factorization
algorithm, a factorization algorithm that can find a factor p of n if p− 1 is partially-smooth. RSA counters this
problem using safe primes of the form p = q + 1 with q prime as well, but this would break our backdoor.
Instead, as a way of countering Pollard's p-1 we can add a large factor to both p − 1 and q − 1 that we will
call pbig and qbig respectively.

= pbig × p1 × · · ·× pk × 2 × qbig × q1 × · · ·× ql × 2

ϕ(n) = (p− 1) × (q − 1)

· · · · · ·

x (mod (p−1)(q−1)
2)

x (mod p− 1) x (mod q−1
2)

· · · Pohlig-Hellman · · ·

CRT

To exploit this backdoor we can reduce our public key y modulo p and q, as we did in our first method,
and proceed with Pohlig-Hellman's algorithm there. This is not a necessary step but this will reduce the

size of the numbers in our calculations, speeding up the attack. We then carry on with CRT to recompute

the private key modulo its order, which can be picked at a secure maximum of
(p−1)(q−1)

2 , which brings

around the same security promises of a safe-prime modulus. This is because of the following isomorphy we

have: (Zn)
∗ ' (Zp)

∗ × (Zq)
∗, with the product's orders s = |(Zp)

∗| and t = |(Zq)
∗| not being coprimes

(gcd(p− 1, q− 1) = 2). This results in a non-cyclic group with an upper-bound on possible subgroup orders

of lcm(s, t) = (p−1)(q−1)
2 .

To decide howbig pbig and qbig should be, we can look at theworld's records for the Pollard's p-1 factorization
algorithm,6 the largest B2 parameter (the large factor) used in a factorization is 1015 ∼ 50bits in 2015. Aswith
our previousmethod, we could usemuch larger factors of around 100 bits to avoid any powerful adversaries

and have an agreeable 251 computations on average to solve the discrete logarithm problem in these large

subgroups.

While the previous method gave us a quadratic edge over someone unknowledgeable of the factorization

6http://www.loria.fr/~zimmerma/records/Pminus1.html

14 | How to Backdoor Diffie-Hellman NCC Group

http://www.loria.fr/~zimmerma/records/Pminus1.html

of n, this newmethod rises the security of our overall scheme to the one of a perfectly secure Diffie-Hellman
use. Its security also relies on the RSA's assumption that factoring n is difficult if n is large enough. More than
that, the probability of having a targeted element be a valid generator can be as large as 1

2 in our example

of a secure subgroup of order
(p−1)(q−1)

2 . This will allow us to easily generate a backdoored modulus that

will fit a specific generator, thus increasing the stealthiness of the implementation phase of our scheme.

In the case where the large two subgroups of order pbig and qbig need to be avoided, one could think about
trying to generate many modulus hoping that the targeted g would fit. This can be done with probability

1
2pbigqbig

for each try, which is way too low. But worse, this would give a free start to someone trying to factor

the modulus using Pollard's p-1. Another way would be to pass a fake order to the program, forcing it to

generate small ephemeral private keys upper-bounded by
ϕ(n)

pbigqbig
. After this, proceeding to use Pohlig-

Hellman over the small factors, ignoring pbig and qbig , would be enough to find the private key. This can be
done in OpenSSL or libraries making use of it by passing the fake order to OpenSSL via dh->q. Of course

doing this would bring back our first method's issues by having to add extra lines of code to our malicious

patch.

15 | How to Backdoor Diffie-Hellman NCC Group

6 Implementing and Exploiting the
Backdoor in TLS

Theoretically, any application including Diffie-Hellman might be backdoored using one of the previous two

methods. As TLS is one of the most well known protocols using Diffie-Hellman it is particularly interesting to

abuse for a field test of our work.

Most TLS applications making use of the Diffie-Hellman algorithm for the handshake—although this is an

algorithm rarely used in TLS—would have their DH public key and parameters baked into user's or server's

generated certificates. Interestingly, the parameters of the, much more commonly used, ephemeral version

of Diffie-Hellman used to add the property of Perfect Forward Secrecy, are rarely chosen by end users and

thus never engraved into user's or server's certificates. Furthermore, most libraries implementing the TLS

protocol (socat, Apache, NGINX,…) have predefined or hardcoded ephemeral DH parameters. Developers

using those libraries will rarely generate their own parameters and will use the default ones. This was the

source of many discussions after being pointed out by Logjam[ABD+15] last year, creating a movement of

awareness, pushing people to migrate to bigger parameters and increase the bitsizes of applications' Diffie-

Hellman modulus from 1024 or lower to 2048+ bits. This trend seems like the perfect excuse to submit a

backdoored patch claiming to improve the security of a library. We'll first see how TLS works with ephemeral

Diffie-Hellman in the next section. Followedwill be a demonstration on how the backdoor was implemented

in real open source libraries. Finally we'll explain how our setup worked to make use of the backdoor.

6.1 Background

An ephemeral handshake allows two parties to negotiate a ``fresh'' set of keys for every new TLS connection.

This has become the preferred way of using TLS as it increases its security, providing the property that we

call Forward Secrecy or Perfect Forward Secrecy, that is: if the long term key is compromised, recorded

past communications won't be affected and future communications will still resist passive attacks. This is

done by using one of the two Diffie-Hellman algorithms provided by TLS: ``normal'' Diffie-Hellman present

in the ciphersuites containing DHE in their names and Elliptic Curve Diffie-Hellman (ECDH) present in the

ciphersuites containing ECDHE in their names. Note that the concept of ``ephemeral'' is not defined the same

by everyone: the default behavior ofOpenSSL, up until recent versions, has been to generate the ephemeral

DH key at boot time and cache it until reboot, unless specified not to do so. Such behavior would greatly

speed up our attack.

At the start of a newephemeral handshake, both the server and the clientwill sendeachother their ephemeral

DH (DHE) public keys via a ServerKeyExchange and a ClientKeyExchangemessage respectively. The server

will dictate as well what the DHE parameters are via the same ServerKeyExchangemessage.

16 | How to Backdoor Diffie-Hellman NCC Group

Figure 3: The serverKeyExchange message

Figure 4: The clientKeyExchange message

Let c and s be the client and the server public keys respectively. The following computation is done on

each side, right after the key exchange, to derive the session keys that will encrypt further communications

(including final handshake messages):

1. premaster_secret= gcs (mod n)

2. master_secret = PRF(premaster_secret, ``master secret'', ClientHello.random + ServerHello.random)

3. keys = PRF(master_secret, ``key expansion'', ServerHello.random + ClientHello.random)

Right after trading their ephemeral DH public keys, the TLS peers compute the Diffie-Hellman algorithm by

exponentiating the other's public key with their own private key. The output is stored in a premaster_secret

variable that is sent into a pseudo-random function (PRF) with the string ``master secret'' and the public values

random of both parties taken from their Hello message as parameters. This is because the DH output can be

of fluctuating lengths: TLS offers several parameters and algorithms to perform this part of the handshake,

passing it through a PRF first aims to normalize its size before deriving the keys from it. The output of that first

PRF is then sent into the same PRF repeatedly along with different arguments: the string ``key expansion''

and the reversed order of the random values we just used, until enough bits are produced for the many keys

used to encrypt and authenticate the post-handshake communications.

Two authentication keys are first derived, client_write_MAC_key and server_write_MAC_key, one for each

17 | How to Backdoor Diffie-Hellman NCC Group

direction. Then two encryption keys are derived as well, client_write_key and server_write_key. For AEAD

ciphers, MAC keys are ignored and two more values after the encryption keys are derived: client_write_IV

and server_write_IV.

6.2 Implementation

Figure 5: socat's xio-openssl.c file

Figure 6: The same backdoored socat file after our changes

socat is a useful command line tool that makes use of OpenSSL underneath the surface, so it is what we

first used to quickly test our backdoor parameters. With the help of the dhparam argument, we can use an

18 | How to Backdoor Diffie-Hellman NCC Group

ASN.1 file encoded in the DER format to specify our backdoored DH parameters to the program. But as this

exercise is one of implementation, we will show how we modified the source code of socat to introduce the

backdoor to the masses. We started by generating small parameters with the secondmethod (CM-HSO) for

our tests. Since socat's generator is 2, we only had to modify the modulus in the dh1024_p variable of the

xio-openssl.c file. Above are the differences between a valid version and a backdoored version of socat.

If we want to submit such a patch as an excuse to increase the size of the DH parameters, we could mimic

socat's case7:

Figure 7: The commit diff page of the socat ``presumed'' backdoor

7http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0

19 | How to Backdoor Diffie-Hellman NCC Group

http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0

6.3 Exploitation

To exploit this kind of backdoor, we first need to obtain aMan-In-The-Middle position between the client and

the server. This can be done passively by obtaining posterior access to logs of TLS records, but this was done

actively in our proof of concept8 by using a machine as a proxy to the server and making the client connect

to the proxy directly instead of the server. The proxy unintelligently forwards the packets back and forth

until a TLS connection is initiated, it then observes the handshake, storing the random values at first, until

the server decides to send its public Diffie-Hellman parameters to be used in an ephemeral key exchange.

If the proxy recognizes the backdoor parameters in the server's ServerKeyExchange message, it runs the

attack, recovering one party's private key and computing the session keys out of that information. With the

session keys in hand, the proxy can then observe the traffic in clear and even tamper with the messages

being exchanged.

Client Server

ClientHello.random

ServerHello.random

ServerKeyExchange.DHparams &

ServerKeyExchange.pubKey

ClientKeyExchange.pubKey

Depending on the security margins chosen during the generation of the backdoor, and on the computing

power of the attacker, it may be the case that the attacker would not be able to derive the session keys until

the first few messages have been exchanged, exempting them from tampering. For better results, the work

could be parallelized and the two public keys could be attacked simultaneously as one might be recovered

more quickly than the other. As soon as the private key of one party is recovered, the Diffie-Hellman and

the session keys computations are done in a negligible time, and the proxy can start live decrypting and live

tampering with the packets. If the attacker really wants to be able to tamper with the first messages, it can

delay the end of the handshake by sending TLS warning alerts that can keep a handshake alive indefinitely

or for a period of time depending on the TLS implementation used by both parties.

8https://github.com/mimoo/Diffie-Hellman_Backdoor

20 | How to Backdoor Diffie-Hellman NCC Group

https://github.com/mimoo/Diffie-Hellman_Backdoor

7 Detecting a Backdoor and Defending
Against One

In the course of this work several open source libraries were tested for composite modulus with no positive

results. TLS handshakes of the full range of IPv4 addresses obtained from scans.io were inspected onMarch

3rd, 2016. A total of 50,222,805 handshakes were analyzed from which 4,522,263 were augmented with

the use of ephemeral Diffie-Hellman. From these numbers, only 30 handshakes used a composite modulus,

all of them had a small factor but none of them could be factored in less than 5 hours using the ECM or

Pollard's p-1 factorization algorithms. Most IPs were hosting webpages, in some cases the same one. All

administrators were contacted about the issue.

Our contributions should withstand any kind of reversing and thus we should not be able to detect any

backdoor produced by people who would have reached the same conclusions as ours. The addition of

easy to find small factors could have been intentionally done to provide plausible deniability. Interestingly,

it is also hard to differentiate a mistake in the modulus generation from a backdoor. From the Handbook of

Applied Cryptography,9 fact 3.7:

Definition 1. Let n be chosen uniformly at random from the interval [1, x].

1. if 1/2 ≤ α ≤ 1, then the probability that the largest prime factor of n is≤ xα is approximately 1+ln(α).
Thus, for example, the probability than n has a prime factor>

√
(x) is ln(2) ≈ 0.69

2. The probability that the second-largest prime factor of n is≤ x0.2117 is about 1/2.

3. The expected total number of prime factors of n is lnlnx + O(1). (If n =
∏

peii , the total number of

prime factors of n is
∑

ei.)

Since it might be easier to visualize this with numbers:

1. A 1024-bit composite modulus n probability to have a prime factor greater than 512 bits is≈ 0.69.

2. The probability that the second-largest prime factor of n is smaller than 217 bits is 1/2.

3. The total number of prime factors of n is expected to be 7.

Considering that a full factorizationwith ECM runs in a complexity tied to the size of the second largest factor,

it might be hard or impossible to do it half of the time. The rest of the time it might take a bit of work, but

since the largest factor found using ECM10 is 274 bits, it is possible.

The question of how to avoid these kinds of backdoors or weaknesses is also interesting and well under-

stood, but rarely done correctly. First, it is known that by using safe primes—primes of the form 2q + 1 with
q prime—the generator's subgroup will have an order close to the modulus' size. Since it is easy to check
if a number is a safe prime, the client should also only accept such moduli. The current state is that most

programs don't even check for prime modulus. As an example, no browser currently warns the user if a

composite modulus is detected.

Another way to prevent this is to have a pre-defined list of public parameters[LK15, Kiv15, Gil15], this would

make Diffie-Hellman look similar to Elliptic Curve Diffie-Hellman in the sense that only a few curves are pre-

defined and accepted in most exchanges.

Both mitigations can be hard to integrate if the two endpoints of a key exchange are not controlled. For

example, this is the case between browsers' and websites' TLS connections where the browser is a different

9http://cacr.uwaterloo.ca/hac/about/chap3.pdf
10http://www.loria.fr/~zimmerma/records/top50.html

21 | How to Backdoor Diffie-Hellman NCC Group

http://www.scans.io
http://cacr.uwaterloo.ca/hac/about/chap3.pdf
http://www.loria.fr/~zimmerma/records/top50.html

program from what is running on the server. Asserting for these special primes might just break the connec-

tion, which would be worse from the user's perspective. This is why Google Chrome is currently removing

DHE from its list of supported cipher suites,11 and recommending server administrators tomigrate fromDHE

to ECDHE. This is also one of the recommendations from Logjam[ABD+15]. These security measures might

very well prevent the attacks described in this work. Backdooring ECDHE in a stealthy way as we did with

DHE remains an open problem.

11https://groups.google.com/a/chromium.org/forum/m/#!topic/blink-dev/AAdv838-koo/discussion

22 | How to Backdoor Diffie-Hellman NCC Group

https://groups.google.com/a/chromium.org/forum/m/#!topic/blink-dev/AAdv838-koo/discussion

8 Conclusion

Many cryptographic constructions are not subject to change, unless a breakthrough comes along and the

whole construction has to be replaced. Very rarely the excuse of updating a reviewed and considered strong

cryptographic implementation to change a single number comes along, and very few people understand

such subtle changes. According to the grading system of a whitepaper by Schneier et al[SFKR15], here is

how such a backdoor scores:

• Medium undetectability: To discover the backdoor onewould have to test for the primality of themodulus.

A pretty easy task, although not typically performed as seen with the socat's case where it took themmore

than a year to realize the composite modulus.

• High lack of conspiracy: In the case of socat only the person who had submitted the vulnerability would

be the target of investigation. It turns out he is a regular employee at Oracle.

• Highplausible deniability: Three things help us in the creation of a good story in the socat's case: reversing

bytes of the fake prime gives us a prime, some small factors were found, anyone with weak knowledge of

cryptography could have submitted a composite number.

• Medium ease of use: Man-in-the-middling the attack and observing the first handshake would allow the

attacker to take advantage of the backdoor.

• High severity: Having access to that backdoor lets us observe or, if exploited in real time, tamper with any

communications made over TLS.

• Medium durability: System admins would have to update to newer versions to remove the backdoor.

• Highmonitorability: The saboteur cannot detect if other attackers are taking advantage of the backdoor,

which is OK since the backdoor in this work are NOBUS ones.

• High scale: Backdooring an open-source library would allow access to many systems' and users' commu-

nications.

• High precision: The saboteur doesn't weaken any system, only the saboteur himself can access the back-

door.

• High control: Like Dual EC, only the saboteur can exploit the backdoor.

While this work is mostly a fictive exercise, we hope to raise awareness in the need for better toolings and

deeper reviews of open source, as well as closed source, implementations of cryptographic algorithms.

23 | How to Backdoor Diffie-Hellman NCC Group

Acknowledgements

Many thanks to both Scott Fluhrer and Scott Contini who have been of precious help in the core ideas of this

paper.

Thanks as well to Pete L. Clark, Tom Ritter, Mike Brown, Roman Zabicki, Vincent Lynch, Drew Suarez, Divya

Natesan, Ryan Koppenhaver and Andy Grant for feedback and discussions.

24 | How to Backdoor Diffie-Hellman NCC Group

References

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex

Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin

VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imperfect

forward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM Conference on Computer

and Communications Security, October 2015. https://weakdh.org/imperfect-forward-secrecy-

ccs15.pdf. 4, 10, 16, 22

[BLN15] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual ec: A standardized back door.

Cryptology ePrint Archive, Report 2015/767, 2015. http://eprint.iacr.org/2015/767. 4

[CCG+16] Stephen Checkoway, Shaanan Cohney, Christina Garman, Matthew Green, Nadia Heninger,

Jacob Maskiewicz, Eric Rescorla, Hovav Shacham, and Ralf-Philipp Weinmann. A systematic

analysis of the juniper dual ec incident. Cryptology ePrint Archive, Report 2016/376, 2016. http://

eprint.iacr.org/2016/376. 4

[Gil15] Daniel Kahn Gillmor. Ietf draft: Negotiated finite field diffie-hellman ephemeral parameters

for tls. Internet-Draft draft-ietf-tls-negotiated-ff-dhe-10, Internet Engineering Task Force, 2015.

https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10. 21

[Kiv15] Tero Kivinen. Rfc 3526: Moremodular exponential (modp) diffie-hellman groups for internet key

exchange (ike). RFC 3526, 2015. https://rfc-editor.org/rfc/rfc3526.txt. 21

[LK15] Matt Lepinski and Dr. Stephen T. Kent. Rfc 5114: Additional diffie-hellman groups for use with

ietf standards. RFC 5114, 2015. https://rfc-editor.org/rfc/rfc5114.txt. 21

[PH78] Stephen Pohlig andMartin Hellman. An improved algorithm for computing logarithms over gf(p)

and its cryptographic significance, 1978. http://www-ee.stanford.edu/~hellman/publications/28

.pdf. 6

[Res13] Eric Rescorla. Rfc 2631: Diffie-hellman key agreement method. RFC 2631, 2013. https://rfc-

editor.org/rfc/rfc2631.txt. 4

[SF] Shinde and Fadewar. Faster rsa algorithm for decryption using chinese remainder theorem.

http://www.techscience.com/doi/10.3970/icces.2008.005.255.pdf. 7

[SF07] Shumow and Ferguson. On the possibility of a back door in the nist sp800-90 dual ec prng, 2007.

Crypto 2007. http://rump2007.cr.yp.to/15-shumow.pdf. 4

[SFKR15] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ristenpart. Surreptitiously

weakening cryptographic systems. Cryptology ePrint Archive, Report 2015/097, 2015. http://

eprint.iacr.org/. 23

[Zuc13] Robert Zuccherato. Rfc 2785: Methods for avoiding the small-subgroup attacks on the diffie-

hellman key agreement method for s/mime. RFC 2785, 2013. https://rfc-editor.org/rfc/rfc2785.

txt. 4

25 | How to Backdoor Diffie-Hellman NCC Group

https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2016/376
http://eprint.iacr.org/2016/376
https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10
https://rfc-editor.org/rfc/rfc3526.txt
https://rfc-editor.org/rfc/rfc5114.txt
http://www-ee.stanford.edu/~hellman/publications/28.pdf
http://www-ee.stanford.edu/~hellman/publications/28.pdf
https://rfc-editor.org/rfc/rfc2631.txt
https://rfc-editor.org/rfc/rfc2631.txt
http://www.techscience.com/doi/10.3970/icces.2008.005.255.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://rfc-editor.org/rfc/rfc2785.txt
https://rfc-editor.org/rfc/rfc2785.txt

	Introduction
	Attacks on Diffie-Hellman and the Discrete Logarithm
	Pollard Rho
	Pohlig-Hellman
	Small Subgroup Attacks

	A First Backdoor Attempt in Prime Groups
	A Composite Modulus for a NOBUS Backdoor with a Hidden Subgroup (CM-HSS)
	A Composite Modulus for a NOBUS Backdoor with a B-Smooth Order (CM-HSO)
	Implementing and Exploiting the Backdoor in TLS
	Background
	Implementation
	Exploitation

	Detecting a Backdoor and Defending Against One
	Conclusion

